Kubernetes容器-网络插件

作者: K8SStack

Kubernetes skew currentVersion 支持用于集群联网的容器网络接口 (CNI) 插件。

你必须使用和你的集群相兼容并且满足你的需求的 CNI 插件。

在更广泛的 Kubernetes 生态系统中你可以使用不同的插件(开源和闭源)。

要实现 [Kubernetes 网络模型],你需要一个 CNI 插件。

你必须使用与 [v0.4.0]

或更高版本的 CNI 规范相符合的 CNI 插件。 Kubernetes 推荐使用一个兼容 [v1.0.0] CNI 规范的插件(插件可以兼容多个规范版本)。

安装

在网络语境中,容器运行时(Container Runtime)是在节点上的守护进程,

被配置用来为 kubelet 提供 CRI 服务。具体而言,容器运行时必须配置为加载所需的 CNI 插件,从而实现 Kubernetes 网络模型。

在 Kubernetes 1.24 之前,CNI 插件也可以由 kubelet 使用命令行参数 cni-bin-dir

network-plugin 管理。Kubernetes 1.24 移除了这些命令行参数, CNI 的管理不再是 kubelet 的工作。

如果你在移除 dockershim 之后遇到问题,请参阅[排查 CNI 插件相关的错误]。

要了解容器运行时如何管理 CNI 插件的具体信息,可参见对应容器运行时的文档,例如:

要了解如何安装和管理 CNI 插件的具体信息,可参阅对应的插件或 [网络驱动(Networking Provider)]

的文档。

网络插件要求

对于插件开发人员以及时常会构建并部署 Kubernetes 的用户而言,

插件可能也需要特定的配置来支持 kube-proxy。 iptables 代理依赖于 iptables,插件可能需要确保 iptables 能够监控容器的网络通信。

例如,如果插件将容器连接到 Linux 网桥,插件必须将 net/bridge/bridge-nf-call-iptables sysctl 参数设置为 1,以确保 iptables 代理正常工作。

如果插件不使用 Linux 网桥,而是使用类似于 Open vSwitch 或者其它一些机制,

它应该确保为代理对容器通信执行正确的路由。

默认情况下,如果未指定 kubelet 网络插件,则使用 noop 插件,

该插件设置 net/bridge/bridge-nf-call-iptables=1,以确保简单的配置

(如带网桥的 Docker )与 iptables 代理正常工作。

本地回路 CNI

除了安装到节点上用于实现 Kubernetes 网络模型的 CNI 插件外,Kubernetes

还需要容器运行时提供一个本地回路接口 lo,用于各个沙箱(Pod 沙箱、虚机沙箱……)。

实现本地回路接口的工作可以通过复用 CNI 本地回路插件来实现,

也可以通过开发自己的代码来实现

(参阅 CRI-O 中的示例)。

支持 hostPort

CNI 网络插件支持 hostPort。 你可以使用官方 portmap

插件,它由 CNI 插件团队提供,或者使用你自己的带有 portMapping 功能的插件。

如果你想要启动 hostPort 支持,则必须在 cni-conf-dir 指定 portMappings capability

例如:

{
  "name": "k8s-pod-network",
  "cniVersion": "0.4.0",
  "plugins": [
    {
      "type": "calico",
      "log_level": "info",
      "datastore_type": "kubernetes",
      "nodename": "127.0.0.1",
      "ipam": {
        "type": "host-local",
        "subnet": "usePodCidr"
      },
      "policy": {
        "type": "k8s"
      },
      "kubernetes": {
        "kubeconfig": "/etc/cni/net.d/calico-kubeconfig"
      }
    },
    {
      "type": "portmap",
      "capabilities": 
    }
  ]
}

支持流量整形

实验功能 CNI 网络插件还支持 pod 入口和出口流量整形。

你可以使用 CNI 插件团队提供的 bandwidth

插件,也可以使用你自己的具有带宽控制功能的插件。

如果你想要启用流量整形支持,你必须将 bandwidth 插件添加到 CNI 配置文件

(默认是 /etc/cni/net.d)并保证该可执行文件包含在你的 CNI 的 bin

文件夹内 (默认为 /opt/cni/bin)。

{
  "name": "k8s-pod-network",
  "cniVersion": "0.4.0",
  "plugins": [
    {
      "type": "calico",
      "log_level": "info",
      "datastore_type": "kubernetes",
      "nodename": "127.0.0.1",
      "ipam": {
        "type": "host-local",
        "subnet": "usePodCidr"
      },
      "policy": {
        "type": "k8s"
      },
      "kubernetes": {
        "kubeconfig": "/etc/cni/net.d/calico-kubeconfig"
      }
    },
    {
      "type": "bandwidth",
      "capabilities": 
    }
  ]
}

现在,你可以将 kubernetes.io/ingress-bandwidthkubernetes.io/egress-bandwidth

注解添加到 pod 中。例如:

apiVersion: v1
kind: Pod
metadata:
  annotations:
    kubernetes.io/ingress-bandwidth: 1M
    kubernetes.io/egress-bandwidth: 1M
...

文章列表

更多推荐

更多
  • AWS自动化机器学习-十一、MLSDLC 的持续集成、部署和训练 技术要求,编纂持续集成阶段,管理持续部署阶段,管理持续训练,延伸,构建集成工件,构建测试工件,构建生产工件,自动化持续集成流程,回顾构建阶段,回顾测试阶段,审查部署和维护阶段,回顾应用用户体验,创建新的鲍鱼调查数据,回顾持续训练流程,清
    Apache CN

  • AWS自动化机器学习-六、使用 AWS 步骤函数自动化机器学习过程 技术要求,介绍 AWS 步骤功能,使用 Step 函数 Data Science SDK for CI/CD,建立 CI/CD 渠道资源,创建状态机,解决状态机的复杂性,更新开发环境,创建管道工件库,构建管道应用构件,部署 CI/CD
    Apache CN

  • AWS自动化机器学习-第三部分:优化以源代码为中心的自动化机器学习方法 本节将向您介绍整体 CI/CD 流程的局限性,以及如何将 ML 从业者的角色进一步整合到管道构建流程中。本节还将介绍这种角色集成如何简化自动化过程,并通过向您介绍 AWS Step 函数向您展示一种优化的方法。本节包括以下章节:
    Apache CN

  • AWS自动化机器学习-一、AWS 上的自动化机器学习入门 技术要求,洗钱流程概述,洗钱过程的复杂性,端到端 ML 流程示例,AWS 如何使 ML 开发和部署过程更容易自动化,介绍 ACME 渔业物流,ML 的情况,从数据中获得洞察力,建立正确的模型,训练模型,评估训练好的模型,探索可能的后续步
    Apache CN

  • AWS自动化机器学习-二、使用 SageMaker 自动驾驶器自动化机器学习模型开发 技术要求,介绍 AWS AI 和 ML 前景,SageMaker 自动驾驶器概述,利用 SageMaker 自动驾驶器克服自动化挑战,使用 SageMaker SDK 自动化 ML 实验,SageMaker Studio 入门,准备实验
    Apache CN

  • AWS自动化机器学习-四、机器学习的持续集成和持续交(CI/CD) 四、机器学习的持续集成和持续交CI/CD技术要求,介绍 CI/CD 方法,通过 CI/CD 实现 ML 自动化,在 AWS 上创建 CI/CD 管道,介绍 CI/CD 的 CI 部分,介绍 CI/CD 的 CD 部分,结束循环,采取以部
    Apache CN

  • AWS自动化机器学习-九、使用 Amazon Managed Workflows 为 Apache AirFlow 构建 ML 工作流 技术要求,开发以数据为中心的工作流程,创建合成鲍鱼调查数据,执行以数据为中心的工作流程,构建和单元测试数据 ETL 工件,构建气流 DAG,清理, 在前面的年龄计算器示例中,我们了解了如何通过 ML 从业者和开发人员团队之间的跨职能
    Apache CN

  • AWS自动化机器学习-七、使用 AWS 步骤函数构建 ML 工作流 技术要求,构建状态机工作流,执行集成测试,监控管道进度,设置服务权限,创建 ML 工作流程, 在本章中,我们将从第六章中的 [处继续,使用 AWS 步骤函数自动化机器学习过程。您将从那一章中回忆起,我们正在努力实现的主要目标是简化
    Apache CN

  • AWS自动化机器学习-八、使用 Apache Airflow 实现机器学习过程的自动化 技术要求,介绍阿帕奇气流,介绍亚马逊 MWAA,利用气流处理鲍鱼数据集,配置 MWAA 系统的先决条件,配置 MWAA 环境, 当建立一个 ML 模型时,有一个所有 ML 从业者都知道的基本原则;也就是说,最大似然模型只有在数据被训练时
    Apache CN

  • AWS自动化机器学习-五、自动化 ML 模型的持续部署 技术要求,部署 CI/CD 管道,构建 ML 模型工件,执行自动化 ML 模型部署,整理管道结构,创建 CDK 应用,部署管道应用,查看建模文件,审查申请文件,查看模型服务文件,查看容器构建文件,提交 ML 工件,清理, 在 [第 4
    Apache CN

  • 近期文章

    更多
    文章目录

      推荐作者

      更多